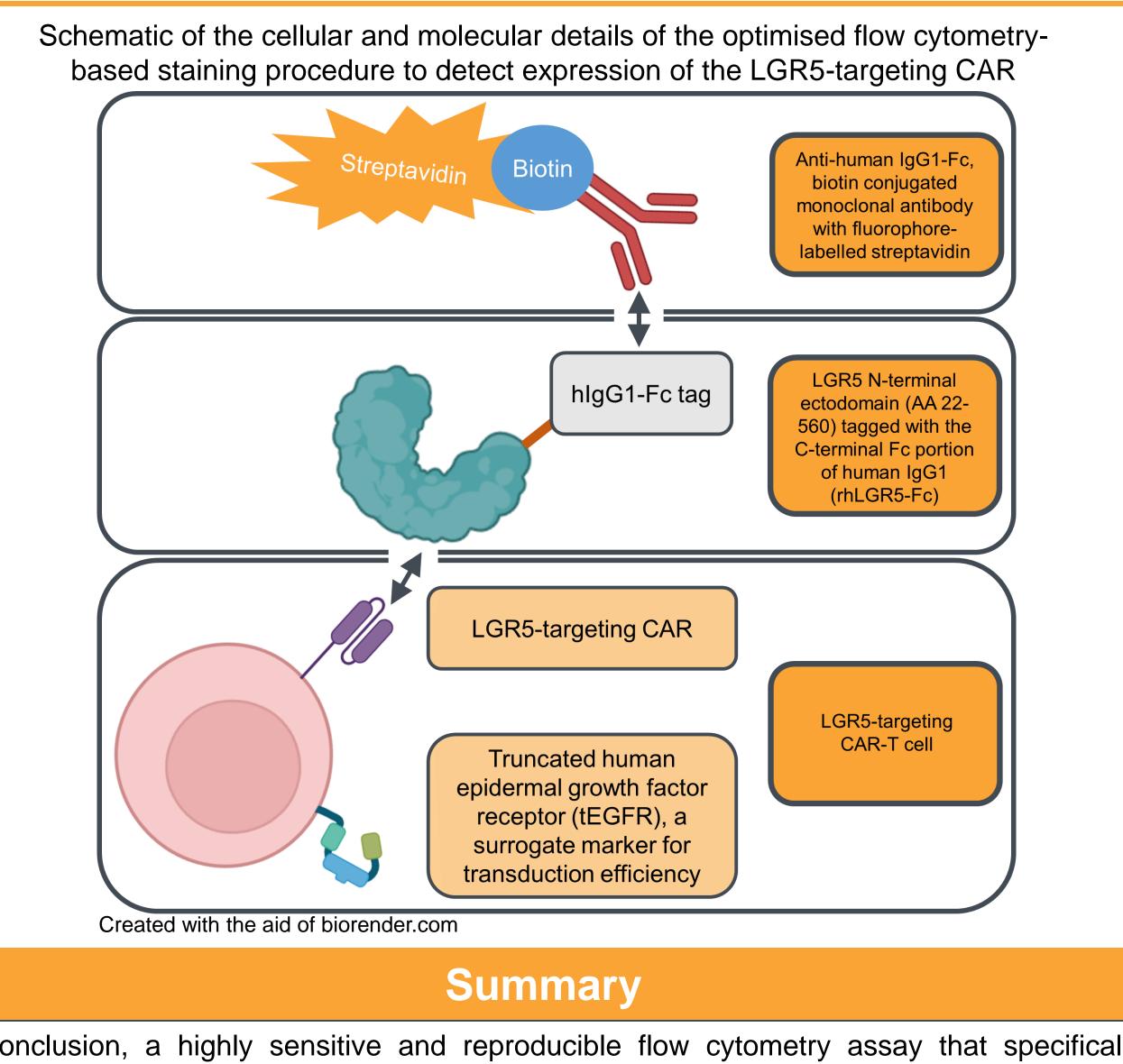
## **DEVELOPMENT OF A FLOW CYTOMETRY-BASED ASSAY** FOR MEASURING SPECIFIC CAR EXPRESSION ON LGR5-**TARGETING CAR-T CELLS**

# Shaun McColl<sup>1,6</sup>


### Introduction

biotech

The measurement of chimeric antigen receptor (CAR) expression is critical for the development, qualification and quantitation of CAR-T cells for clinical applications. There is a comprehensive repertoire of tools commercially available for specifically measuring expression of the CAR on CD19-targeting CAR-T cells<sup>1</sup>. However, with the rapidly expanding repertoire of CAR-T cells in development targeting a diverse range of tumour antigens, there is a paucity of readily implementable assays that specifically measure CAR expression<sup>2,3</sup>. In this study, a flow cytometry-based assay for measuring expression of a CAR targeting the cancer stem cell marker Leucine-rich Repeat-containing G-protein coupled Receptor 5 (LGR5), was developed. The optimised assay utilises an Fc-tagged recombinant human LGR5 protein, in combination with a biotinylated anti-human IgG1 Fc-specific secondary antibody and streptavidin, to specifically and reproducibly detect the CAR on LGR5-targeting CAR-T cells with high sensitivity. Overall, the findings highlight the utility of using CARtargeting recombinant proteins in combination with secondary antibody staining for evaluating CAR expression on CAR-T cells, providing a general flow cytometry-based staining strategy that may be adapted for assessing a diverse repertoire of CARs.

### Aim

### To directly quantify CAR expression on preparations of T cells transduced with a lentiviral vector encoding an LGR5-targeting CAR.



In conclusion, a highly sensitive and reproducible flow cytometry assay that specifically detects expression of the LGR5-targeting CAR on the surface of LGR5-targeting CAR-T cells was established. This assay will play an important role in an upcoming Phase I clinical trial in advanced colorectal cancer.

Timona Tyllis<sup>1</sup>, Caitlin Abbott<sup>1</sup>, Dylan McPeake<sup>1</sup>, Jade Foeng<sup>1</sup>, Veronika Bandara<sup>2</sup>, Batjargal Gundsambuu<sup>2</sup>, Silvana Napoli<sup>2</sup>, Stuart Mills<sup>3</sup>, Emma Thompson<sup>4</sup>, Allison Cowin<sup>3</sup>, Claudine Bonder<sup>4</sup>, Timothy Sadlon<sup>5</sup>, Iain Comerford<sup>1</sup>, Simon C Barry<sup>5</sup>,

1. Chemokine Biology, University of Adelaide, Adelaide, SA, Australia

2. Robinson Research Institute, North Adelaide, SA, Australia

3. Future Industries Institute, Mawson Lakes Campus, University of South Australia, SA, Australia

4. Centre for Cancer Biology, SA Pathology and University of South Australia, SA, Australia

5. RRI/WCHN, North Adelaide, SA, Australia

6. Carina Biotech, Level 2 Innovation & Collaboration Centre, UniSA Bradley Building, Adelaide SA 5001, Australia

study, several staining and conditions were evaluated the to determine optimal detecting CAR LGR5expression on CARcells. targeting Firstly (light orange) rhLGR5-Fc R&D from systems was used in combination with a directly anti-human conjugated IgG1 secondary antibody. Secondly (dark orange), rhLGR5-Fc from BioLegend was used in combination a biotinylated antihuman IgG1-Fc secondary antibody and streptavidin.

## 

| eagents and Materials                                                          |                       |                  |                                                                                                                                                                                          |  |  |  |
|--------------------------------------------------------------------------------|-----------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Reagents & Materials                                                           | Manufacturer/Supplier | Catalogue Number | Notes                                                                                                                                                                                    |  |  |  |
| BD Fixable viability stain<br>R780                                             | BD                    | 565388           | 1/1000 dilution in PBS,<br>50 µL/well                                                                                                                                                    |  |  |  |
| Recombinant Human<br>LGR5-Fc Chimera<br>Protein, (carrier free)<br>(rhLGR5-Fc) | R&D Systems           | 8078-GP-050      | <ul> <li>Stock resuspended at 100 μg/mL</li> <li>Working solution at 10 μg/mL, 50 μL/well</li> </ul>                                                                                     |  |  |  |
| Recombinant Human<br>LGR5-Fc Chimera<br>(carrier-free)<br>(rhLGR5-Fc)          | BioLegend             | 789708           | <ul> <li>Stock concentration<br/>provided on the<br/>certificate of analysis<br/>from the manufacturer<br/>for each lot</li> <li>Working solution at 10<br/>µg/mL, 50 µL/well</li> </ul> |  |  |  |
| Mouse anti-human CD3-<br>BUV737                                                | BD                    | 612750           | Clone: UCHT1                                                                                                                                                                             |  |  |  |
| Mouse anti-human CD3-<br>BV421                                                 | BD                    | 562426           | Clone: UCHT1                                                                                                                                                                             |  |  |  |
| Mouse anti-human<br>EGFR-eFluor™ 660                                           | Invitrogen            | 50-9509-42       | Clone: me1B3                                                                                                                                                                             |  |  |  |
| Mouse anti-human IgG1<br>PE                                                    | BD                    | 568275           | Clone: HP6001<br>0.5 μL/1x10 <sup>5</sup> T cells                                                                                                                                        |  |  |  |
| Mouse anti-human IgG1<br>Fc-Biotin                                             | Invitrogen            | MH1515           | Clone: HP6070,<br>0.5 μL/1x10 <sup>5</sup> T cells                                                                                                                                       |  |  |  |
| PE-Streptavidin                                                                | BD                    | 554061           | 1/1000 dilution in flow<br>cytometry staining buffer,<br>50 μL/well                                                                                                                      |  |  |  |
| 96-well U-bottom Plate                                                         | Thermo Scientific     | 163320           | Plate 1x10 <sup>5</sup> T cells/well                                                                                                                                                     |  |  |  |

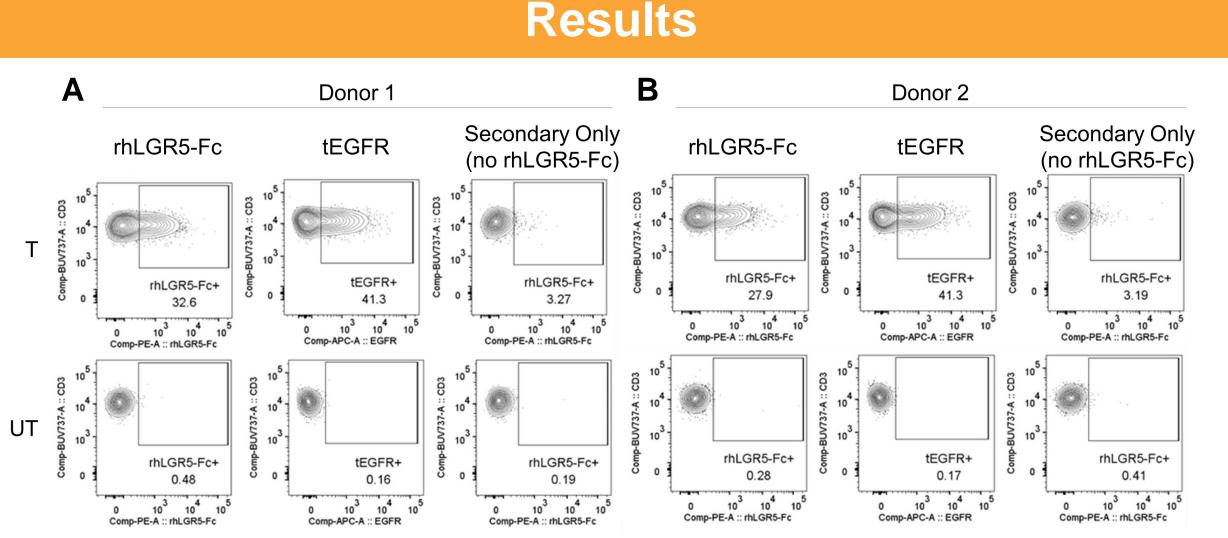



Figure 1: Flow cytometric analysis detecting the LGR5-targeting CAR with rhLGR5-Fc from R&D Systems and a directly conjugated anti-human lgG1 secondary antibody. Fresh LGR5-targeting CAR-T cells were sampled from culture and 3x10<sup>4</sup> cells/well in a 96-well U-bottom tray were stained with rhLGR5-Fc (R&D systems, 500 ng/well). (A, B) Contoured dot plots reporting CAR expression (rhLGR5-Fc+) alongside tEGFR expression for transduced (T) and untransduced (UT) T cells from (A) Donor 1 and (B) Donor 2. The dot plots depicted are pre-gated on single, live T cells and display CD3 (y-axis) against rhLGR5-Fc or EGFR (x-axis). The secondary only control on transduced T cells was used to set the gate boundary for determining CAR (rhLGR5-Fc+) positivity.

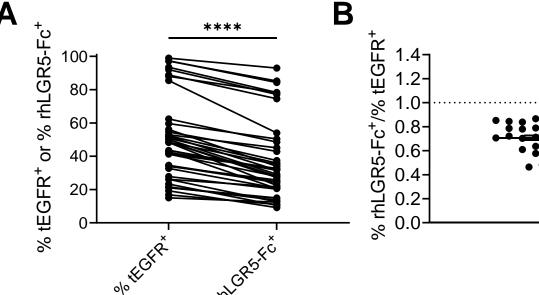
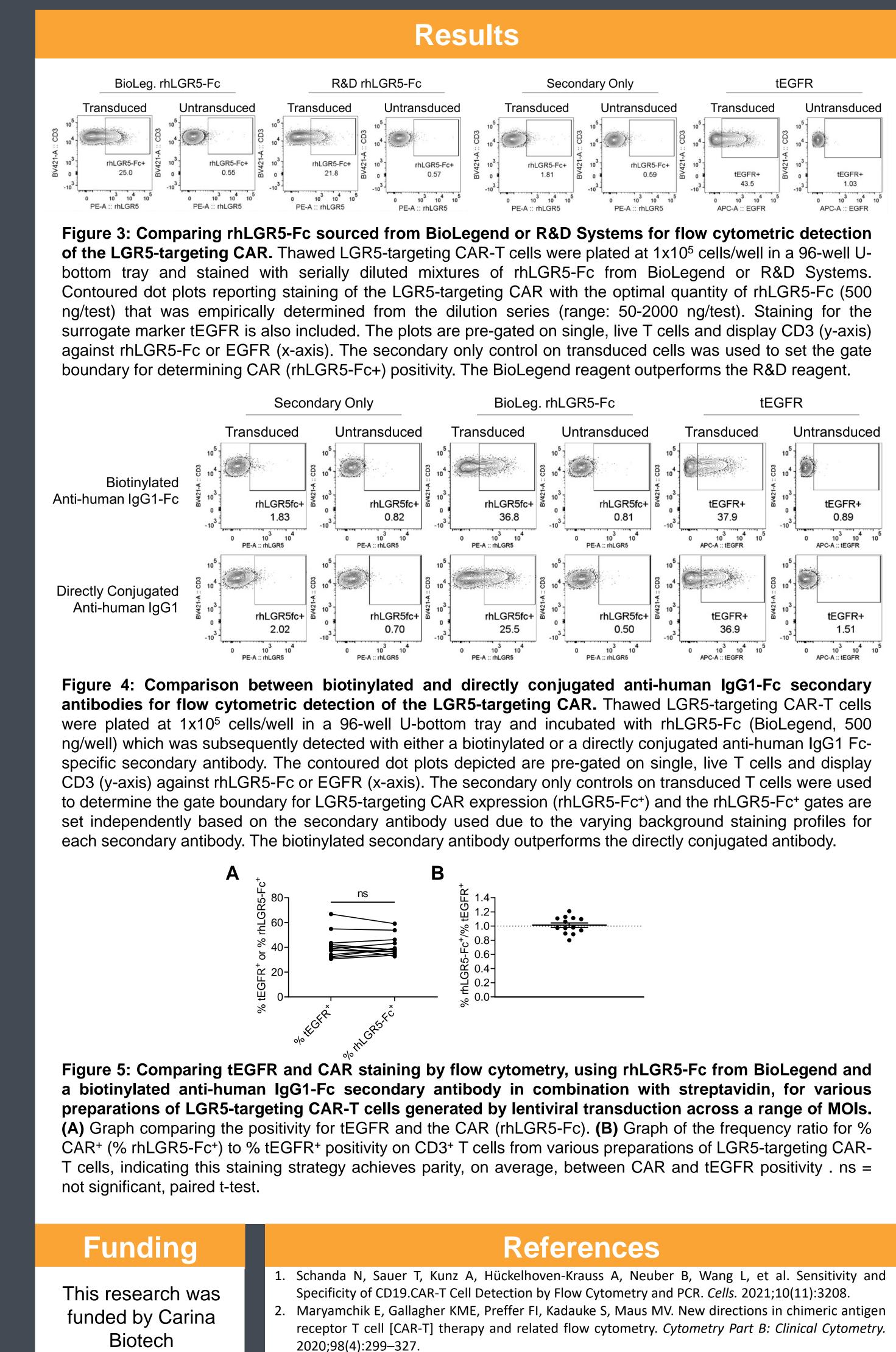




Figure 2: Comparing tEGFR and CAR staining by flow cytometry, using rhLGR5-Fc from R&D Systems and a directly conjugated anti-human IgG1 secondary antibody, for various preparations of LGR5targeting CAR-T cells generated by lentiviral transduction across a range of MOIs. (A) Graph comparing the positivity for tEGFR and the CAR (rhLGR5-Fc). (B) Graph of the frequency ratio for % CAR<sup>+</sup> (% rhLGR5-Fc<sup>+</sup>) to % tEGFR<sup>+</sup> positivity on CD3<sup>+</sup> T cells from various preparations of LGR5-targeting CAR-T cells, indicating this staining strategy is potentially under reporting CAR expression. \*\*\*\* p = <0.0001, paired t-test.





## THE UNIVERSITY of ADELAIDE

| GR5-Fc                                                                                    | Secondary Only                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tEGFR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Untransduced                                                                              | Transduced                                                                                                                                                                                                                       | Untransduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Transduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Untransduced                                                                                                                                                                                                                   |
| rhLGR5-Fc+<br>0.57<br>0 10 <sup>3</sup> 10 <sup>4</sup> 10 <sup>5</sup><br>PE-A :: rhLGR5 | EQ<br>10 <sup>4</sup><br>10 <sup>4</sup><br>rhLGR5-Fc+<br>1.81<br>-10 <sup>3</sup><br>0<br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 <sup>3</sup><br>0<br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 <sup>5</sup><br>PE-A :: rhLGR5 | 10 <sup>4</sup><br>10 <sup>3</sup><br>10 <sup>3</sup> 1 | 10 <sup>5</sup><br>10 <sup>4</sup><br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 <sup>5</sup><br>APC-A :: EGFR | 10 <sup>5</sup><br>10 <sup>4</sup><br>10 <sup>3</sup><br>10 <sup>3</sup><br>10 <sup>3</sup><br>10 <sup>3</sup><br>10 <sup>3</sup><br>10 <sup>3</sup><br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 <sup>5</sup><br>APC-A :: EGFR |

Hu Y, Huang J. The Chimeric Antigen Receptor Detection Toolkit. *Frontiers in Immunology* 2020;11.